
Introduction to Workflow Description Language (WDL)

Beth Sheets & Juan Pablo Ramos Barroso
Data Sciences Platform, Broad Institute of MIT & Harvard

Reproducing, validating, and extending analyses is essential to
science

But reproducing a computational analysis is hard!

● How do I install the software and its dependencies?

● Am I using all the same versions of the software?

● Why is this script in Python and that script in R?

● Can I know that this runs exactly the same on my computer vs my
colleague’s?

Workflow languages were designed to help

Consistency / Reproducibility
- Across batches
- Across users
- Across platforms

Ease of use:
● Reduces user error
● Helps you scale up to easily process thousands of samples

Workflows are a community resource

There are thousands of workflows published in the community repository,
Dockstore.org!

Sharing your workflows with the community:
● Centralizes knowledge
● Builds community resources
● Helps you get feedback
● Makes your scientific method citable
● Gives you metrics to include in proposals

http://dockstore.org

Which workflow language should I use?

Workflow Description Language (WDL), Common Workflow Language (CWL),
Nextflow, Snakemake…they are all helpful!

What workflows are available already that are similar to my analysis?
- Check out Dockstore.org for workflows shared by the community.

What language are my colleagues using?
- You have community to learn from!

http://dockstore.org

Workflow Description Language (WDL)

● A language to describe the steps of an analysis

● Created to be human readable and easy to write

● Bioinformatics / genomics focus due to it being developed by
the Broad Institute (but can be used for any data science)

● Open source, community-developed (by OpenWDL)

What WDL is NOT

● Not a programming language

● Not a tool that does analysis

● Not a GUI or platform

● Not just for Broad pipelines

● Not an alternative to containers or scripting languages

Recipe for a Workflow

Container
Descriptor
file (.wdl)

Parameter
file

Cromwell

Recipe for a Workflow

Container
Descriptor
file (.wdl)

Parameter
file

Cromwell

Intro to containers

Container

● Packaged up tools and all of its dependencies
● Makes software portable from one computing

environment to another.

● Docker is commonly used by cloud platforms
● Singularity is common for HPCs because it doesn’t

require root permissions

Check out BioContainers.pro from the BioConda
community. They also automate releasing Singularity
containers for reuse by the community in workflows.

http://biocontainers.pro

Recipe for a Workflow

Container
Descriptor
file (.wdl)

Parameter
file

Cromwell

Intro to workflow descriptor files

This file describes your
software commands as
“tasks”, specifying inputs,
outputs, and the environment
(container).

Tasks are organized together
to create workflows.

version 1.0

workflow MyWorkflowName {

}
task task_A {

}
task task_B {

…

}

…

…

…

Review: Workflow Description Language (WDL)

version 1.0
workflow MyWorkflowName {

}
task task_A {
}
task task_B {
}

input {

}
call task_A {

}
call task_B {

}
output {

}

 out_A = task_A.out_name_A
 out_B = task_B.out_name_B

 input:
 in = task_A.out_name_A

 input:
 ref = my_ref
 in = my_input
 id = name

 File my_ref
 File my_input
 String name

…
…

Review: Workflow Description Language (WDL)

version 1.0

workflow MyWorkflowName {

}
task task_A {

}
task task_B {

…

}

…

…

…

task task_A {

}
task task_B {
}

input {

}
command {

}
runtime {

}
output {

}

 File out_name_A = “~{id}.ext”

 docker: ‘my_project/do_stuff:1.2.0’

do_stuff -R ~{ref} -I ~{in} -O
~{id}.ext

 File ref
 File in
 String id

…

version 1.0

workflow MyWorkflowName {

}
task task_A {

}
task task_B {

…

}

…

…

…

Review: Workflow Description Language (WDL)

version 1.0
import /path/to/wdl/with/new_wf.wdl as
new_wf
workflow MyWorkflowName {

}
task task_A { }
task task_B { }

input {

}
call task_A {
}

call task_B {
}

call new_wf.task_C {
}

output {

}

 out_A = task_A.out_name_A
 out_B = task_B.out_name_B
 out_C = task_C.out_name_C

…

 File my_ref
 File my_input
 String name

…
…

…

…

Recipe for a Workflow

Container
Descriptor
file (.wdl)

Parameter
file

Cromwell

Workflow Inputs

Example Workflow
{
 "wf.int_val": 3,
 "wf.my_ints": [5,6,7,8],
 "wf.ref_file": "/path/to/file.txt"
}

version1.0

workflow wf {
 input {
 Int int_val
 Int int_val2 = 10
 Array[Int] my_ints
 File ref_file
 }
 String not_an_input = "hello"
 call t1 {
 input: x = int_val
 }
 call t2 {
 input: x = int_val, t=t1.count
 }
 }
}

Example JSON Input

1. Identify all workflow inputs.
2. For each input, determine the input type (str, int,

etc).
3. Create a JSON file with key/value pairs for each

workflow input.
a. Key format : <workflow name>.<input name>

4. Set the value of each key/value pair to the value of
the workflow input.

Parameter file (json format)

value can be path, string, int, array, etc

 "hello_world.hello.myName": "/<usr>/bcc2020/wdl-training/exercise1/name.txt"

workflow
name

task
name

parameter
name

KEY VALUE

hello.json

 1
 2
 3

{
 "hello_world.hello.myName": "/<usr>/bcc2020/wdl-training/exercise1/name.txt"
}

Specifies inputs, outputs, and computing resources that are specific to your
analysis. This is where you can specify cloud vs local environment logic.

Recipe for a Workflow

Container
Descriptor
file (.wdl)

Parameter
file

Cromwell

What is Cromwell

21

 Cromwell

…

SGE TESLocal Google

Funnel

https://github.com/broadinstitute/cromwell

https://github.com/broadinstitute/cromwell

Two main ways to run Cromwell

One-off

• Appropriate for
independent analysts

• API endpoints
• More scalable
• Some devops needs
• Appropriate for production
environments

• Call-caching!
(aka ka-ching”)

cromwell run \
hello.wdl \
--inputs hello_inputs.json

Server mode

• Simple self-contained
command

Steps to running a WDL in standalone mode

womtool validate hello.wdl

womtool inputs hello.wdl > hello_inputs.json

• Validate syntax

• Generate inputs JSON

• Run
cromwell run hello.wdl --inputs hello_inputs.json

Resources for getting started
Resource Link
OpenWDL GitHub https://github.com/openwdl/wdl

WDL 1.0 Spec https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md

WDL 1.0 Docs (wdl-docs) https://wdl-docs.readthedocs.io/en/stable/

WDL Cookbook https://wdl-docs.readthedocs.io/en/stable/WDL/chain_tasks_together/

Learn-WDL Videos https://github.com/openwdl/learn-wdl

WARP WDL Best Practices https://broadinstitute.github.io/warp/docs/Best_practices/GC_cost_optimization

OpenWDL Slack https://openwdl.slack.com/

Examples in WARP (WDL Analysis
Research Pipelines; Terra-optimized)

https://broadinstitute.github.io/warp/

Theiagen Genomics WDL Workshop https://github.com/theiagen/wm_training_202205

Task examples in BioWDL https://biowdl.github.io/

https://github.com/openwdl/wdl
https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md
https://wdl-docs.readthedocs.io/en/stable/
https://wdl-docs.readthedocs.io/en/stable/WDL/chain_tasks_together/
https://github.com/openwdl/learn-wdl
https://broadinstitute.github.io/warp/docs/Best_practices/GC_cost_optimization
https://openwdl.slack.com/
https://broadinstitute.github.io/warp/
https://github.com/theiagen/wm_training_202205
https://biowdl.github.io/

Questions?

